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ABSTRACT

In the past, human body models have been developed by assuming simple

geometric shapes for the components of the human. body in order to predict the

mass properties, i.e. mass, center of mass, and inertia tensor. In this study

a new personalized method of predicting component mass properties is developed,

based on experimental data for whole-body mass properties for three body

positions where only one component is moved. Also needed, however, are esti-

mates for the mass and sum of the moments of inertia of each component.

Additionally, the contribution of outer garments or a suit to the mass

properties can be included in the prediction if it is assumed that the compo-

nents of the outer covering are rigid bodies that move negligibly relative to

corresponding body components.
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CHAPTER 1

Introduction

Purpose

The motion of a dynamic system depends on the mass properties of the

system, i.e. the mass, center of mass, and inertia tensor. If a human being

is a part of the system, then the system properties depend on his or her

contribution. The human's contribution to mass properties depend on body

position, and hence become a function of time if the human is in motion.

For many dynamic systems the human's contribution may be negligible,

as for a large airplane, where the pilot's mass is small compared with the

mass of the system. However, there are systems Where this is not the case,

for example an astronaut with a pressure suit and backpack. For some dynamic

systems, the human may constitute the entire system, e.g. a swimmer, a diver,

a gymnast. Where the human's contribution to the system is significant, a pre-

diction of the system dynamics depends upon knowledge of the time history of

the person's mass properties. While a human's mass is directly measurable

(using scales), this is not the case for the other mass properties.

The purpose of this study is to develop a method for predicting the

center of mass and the inertia tensor for any human being in any given posi-

tion, with or without outer garments or suits. Thus, in this study, methods

are presented for obtaining the time history of the mass properties of any

particular human being directly from the time history of the body position.

The means presented for predicting body center of mass and inertia tensor

shall depend upon the following assumptions:
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(1) The human body is adequately modeled by a system of rigid bodies

connected by joints.

(2) There exist valid method for estimating the mass of each body com-

ponent. A review of possible methods is given in Chapter 6.

(3) There exist valid method for estimating the sum of the three moments

of inertia for each component about component-fixed ,axes. Possible methods

are discussed in Chapter 7.

Assumption (1) above is equivalent to assuming that body components do

not deform appreciably for different body positions. This assumption is

questionable for the torso, whose curvable, twistable backbone can make seem-

ingly significant changes in torso shape. For a suited, backpacked astronaut

this assumption seems more reasonable because of the restricted mobility im-

posed by currently used equipment.

Assumption (2) arises as a consequence of the fact that there appears

to be no nondestructive means for experimentally determining the mass of the

individual body components. There seems no way to directly weigh the

individual body components of a living human because of the unknown forces at

the joint(s) connecting each component to the rest of the body.

Assumption (3) is necessary to provide a needed additional independent

equatton. relating the component moments of inertia. The necessity for the

introduction of this equation is established in Chapter 5.

Background

Several researchers have attempted to obtain experimental values of the

mass properties for parts of or entire humans. Much of the early work in this

area consisted or obtaining centers of gravity and moments of inertia for

parts of dissected frozen cadavers. Thus Braune and Fischer obtained these0



values for a sample of three (Refs. 2, 3), Fischer later added another one

(Ref. 8), and Dempster added eight more (Ref. 6). Barter used the data thus

obtained to formulate a set of regression equations estimating the weight of

each cadaver component as a function of total weight (Ref. 1).

Later experimental work centered on mass properties for living humans.

Swearingen determined the centers of gravity for 5 living subjects in 67

body positions (Ref. 16). King investigated the locus of the center of gravity

for various body positions (Ref. 12). Santschi, DuBois, and Omoto determined

the center of gravity and moments of inertia for 66 subjects in various body

positions by using a complex pendulum (Ref. 15).

Fowler mathematically showed how all the mass properties of a spacecraft

could be experimentally determined in flight by using three independent,

known thrusts (Ref. 9). This method is applicable to a human subject, and

is the only available experimental means of determining products of inertia.

More recently, attempts havebeen made to model the human in order to

predict mass properties as a function of body position. Hanavan (Ref. 11)

assumed a simple geometric shape for each body component and derived formulas

for inertia moments about component-fixed axes. DuBois and others improved

Hanavan's model and added a space suit model consisting of hollow, simply

shaped "shells" (Ref. 7). Tieber and Lindemuth (Ref. 17) made further modi-

fication of Hanavan's model and also modeled a Gemini space suit. They used

an improved set of regression equations developed by Clauser and McConville

(Ref. 4) to obtain estimates for component masses.

Study Structure

This study first shows how whole-body mass properties can be determined

from component mass properties. In this procedure component-fixed axes are
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emIrnIcd f, tlr 2). -T tr o methords for r t i .irir the'r qpor)er rrit pro-

perties are presented. The first of these is a model formulated by Ernest

P. Hanavan (Ref. 11), which assumes simple geometric shapes for the components

(Chapter 3). The second method is a more general approach, making no

assumption about component shapes except that they are rigid (Chapter 4).

The necessity for the introduction of an additional equation relating the

component moments in order to implement this latter method is then established

(Chapter 5). This second method depends upon experimental data for whole-

body mass properties for selected, fixed positions (Chapter 4, page 36),

estimates of component masses (Chapter 6), and estimates of sums of component

moments of inertia (Chapter 7).

A discussion of limitations of the second method and recommendations

for further study are presented (Chapter 8), and finally a conclusion is

given (Chapter 9).

0



CHAPTER 2

Determination of Whole-Body Mass Properties From

Component Mass Properties with Respect to

Component-Fixed Axes-

Notation

The notation for this chapter and for the remainder of the study is

as follows:

Scalar Notation

i,j - Subscripts denoting the quantity subscripted is for

component number i or j, respectively.

mB - the total body mass.

mi - the mass of component i.

n - the total number of body components.

s. - the sum of the moments of inertia of component j.

about an axis system centered at j's center of mass.

x, y, ji - a set of rotation angles between the axes of C! - xyz

and Ci - xyz (these angles are more explicitly defined

later).

I, II, III, ... , N - superscripts denoting the quantity superscipted

is for a body position denoted by the Roman Numeral ( N

denotes the largest body position number).

II( ) - an operator denoting the difference between the value

of the quantity within the parentheses evaluated for

position I and the value for position II (any Roman numerals

can be used).

5



Point and Coordinate System Notation

A - an arbitrarily located (but known) point.

A-xyz - an arbitrarily oriented Cartesian coordinate system

centered at A

CB - the center of mass of the body.

Ci - the center of mass of component i

Ci-xyz - a Cartesian coordinate system centered at Ci with

axes respectively parallel to the axes of A-xyz

C! -xyz - a component-fixed Cartesian coordinate system centered1

at Ci.

J. - the joint (pivot point) at the end of component i
I

closer to the body torso (e.g., the elbow is the fore-

arm's J3 )"

Ji-xyz - a Cartesian coordinate system centered at Ji with

axes respectively parallel to those of Ci-xyz.

(and thus also parallel to those of A-xyz ).

J3. -xyz - a Cartesian coordinate system centered at J3 with
1 1

axes respectively parallel to those of C' -xyz.1

Vector Notation

b.I- a 6xl vector used for notational brevity (defined on3

page 30).

R - the 3xl vector of Cartesian coordinates of BB
relative to A-xyz.

R - the 3xl vector of Cartesian coordinates of C.
1 1

relative to A-xyz.



R- the 3xl vector of Cartesian coordinates of Ci

relative to Ji-xyz.

RC!/ji- the 3xl vector of Cartesian coordinates of Ci
I1

relative to J!-xyz.
1

Ri - the 3xl vector of Cartesian coordinates of Ji

relative to A-xyz.

The orientation (for a typical position) of some of the points,

coordinate systems, and vectors appears in Figure 1 (next page).

Matrix Notation

A. - a 6x3 matrix used for notational brevity.

(T. is defined below).

IB - the whole-body inertia tensor (3x3) about

axes of A-xyz.

Ii - the inertia tensor of component i about

the axes of A-xyz.

li/c i- the inertia tensor of component i about

the axes of Ci-xyz.

IIii/C - the inertia tensor of component i about

11 the axes of Ci xy.

V- a 6x6 matrix that is a function of the3

elements of T. (explicitly defined in

Equation (4-8), page 30).

Pi - a 3x3 matrix which contains elements result-

ing from application of the parallel axis

theorem. (more explicitly defined in
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Equations (2-9) and (2-10), page 10).

Q~ [ -a 12x6 matrix used for notational brevity.

* - a IMx matrix used for notational brevity.

.11000

Analysiss

The whole-body mass properties (with respect to A-xyz) can be, expressed

in terms of the component properties (with respect to A-xyz) as follows:

n
Mass m.8  m. (2-1)

1

Center of Mass R B.x Ri i /MB (2-2)

n
Inertia Tensor I B = i (2-3)

But R i+ R1(2-4)

Also R TR(2-5)

where the transformation matrix T.i is given by:

csxcosy cosxsi nys inv~-si nxcosil cosxsi nycosvi+s inxsinll

Tsnxcosy sinxsinysinp+cosxcosvi sinxsinycosii-cosxsinvl
-iycosysinp cosycosii

(2-6)
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In the above matrix, x, y, and p are rotation angles illustrated

in Figure 2. In the field of flight mechanics, v, X, and y correspond,

respectively, to aircraft bank, heading, and flight path angles (Ref. 13,

page 44). The orientation of the primed axes with respect to the unprimed

can be described in terms of these three rotation angles. To define these

rotations, two intermediate coordinate systems are introduced whose properties

are as follows: the system OxllyzI is obtained from the unprimed system by

means of a rotation x around the z-axis; the system Ox2Y2 z 2  is obtained

from OxlYlzl by means of a rotation y around the yl-axis; the primed

axes system is obtained from Ox2y2z 2  by means of a rotation p around the

x2-axis.

Substituting Equation (2-5) into Equation (2-4) and then substituting

(2-4) into (2-2), the whole-body center of mass becomes:In
SR-B =i=I (Ti-Ci/J + -i ) mi /mB (2-7)

By applying the parallel axis theorem, it is possible to express I.1

in terms of li/ci as follows:

I I i/C + Pi i=1'""n (2-8)

where Pi is a 3x3 matrix whose elements are defined as follows:

Main Diagonal

Elements

: (pp) mi [R2 (q) + Ri (r)] (2-9)

,here p, q, r c {1,2,3} and p # q • r.
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Off Diaqonal

Elements

P((qqr) = m [RC(q) (r) (2-10)Pi qr) m Ci1 (R)]

where q, r E {1,2,3} and q ! r.

Now the inertia tensor can be rotated by a similarity transformation,

i.e., I = TIT-, where T is the transformation matrix from the primed

to the unprimed axes systems (Ref. 10, page 370). Since our trans-

formation is orthogonal, then T = T, where the T superscript indicates

the transpose (Ref. 14, page 207). Thus I TI'TT

For li/C , then, we can write:

T. ~ T
Iiii'C Ti I T T (2-11)

Substituting (2-11) into (2-8), we obtain:

li =T.i Ii'/ciTiT + Pi (2-12)

Substituting (2-12) into (2-3) results in:n[
:5 i= Tili.Ci TT + pi (2-13)

Note that in Equations (2-7) and (2-13), that while Ti(i=l,...,n)

and Pi(i=l,....,n) are functions of position, Rc!/Ji(i=l,...,n) and

i/Cci (i=l...,n) are not (assuming components are rigid bodies). Equations

(2-7) and (2-13), then, allow us to determine the whole-body mass properties

for any position, given the body position and'component mass properties with

respect to component-fixed axes systems. A computer program capable of

accomplishing this (PROGRAM WHOLE) is provided in Appendix A.

0



CHAPTER 3

The Hanavan Model

A personalized human body model was developed by Ernest P. Hanavan

(Ref. 11), who obtained approximations for the RCi/j and I,/ci(i-l,...,n)

by assuming simple geometric shapes for the body components. Figure 3

illustrates his model (from Ref. 11, page 8), and the assumed component shapes

are indicated below:

1 Head - right circular ellipsoid of revolution.

2 Upper Torso - right elliptical cylinder.

3 Lower Torso - right elliptical cylinder.

4,5 Hands - spheres.

6,7 Upper Arms - frustrums of right circular cones.

8,9 Forearms - frustrums of right circular cones.

10,11 Upper Legs - frustrums of right circular cones.

12,13 Lower Legs - frustrums of right circular cones.

14,15 Feet - frustrums of right circular cones.

Using 25 anthropometric body measurements of the person being modeled

(Ref. 11, pages 9-10, A-1 through A-3) and Barter's regression equations for

estimating masses of components (see Chapter 6), Hanavan defined his simply

shaped components and provided formulas for component mass properties

(Ref. 11, pages 13-24).

In this way, personalized approximations can be made for whole-body

mass properties in any position. Hanavan compared his model's prediction

with experimental data (Ref. 15), and claims his center of mass

13
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is generally within 0.7 inches and moments of inertia are generally within

10% of experimental values from pendulum tests of live subjects. For prelim-

inary design studies, this may be sufficiently accurate. Where better accuracy

is needed, the method presented by the present study (Chapter 4) can be used.

The work of Hanavan was expanded by J. Dubois and others (Ref. 7)

who added a model pressure suit consisting of "shells" of similar shapes

surrounding each component. They also improved Hanavan's original model by

assuming the torso hollow (thus taking air-filled lungs into account).

Further improvement of Hanavan's work was made by Tieber and Lindemuth

(Ref. 17). Though the shape of Hanavan's components is not radically altered,

pivot points are changed (Ref. 17, pages 16-21). Also, a different set of

regression equations is used for estimating component masses (discussed in

Chapter 6). A pressure suit model, similar to that of Dubois, is also pro-

vided (Ref. 17, pages 23-34), based on a G-4c suit (used in the Gemini

Droject). Tieber and Lindemuth claimed that the center of gravity errors

arc, generally reduced to less than 0.3 inches, but the moment of inertia

errors are generally as high as 15% of experimental values.

The present study presents a more general method for obtaining

['/j and I 'c (i=l,...,n) than Hanavan's model (Chapter 4). But this

rý,thod, it will be seen, depends on obtaining estimates for the sums of

cc:-ponent inertia moments. Hanavan's model provides one possible method of

c:,taining these estimates (see Chapter 7).

This more general method will also depend on estimates of component

s e es. Barter's regression equations will be presented in Chapter 6 as a

ri.,ible estimation method.



CHAPTER 4

Determination of Component Mass Properties

* About Component-Fixed Axes

Overview

As was shown in Chapter 2, whole-body mass properties for any position

can be found if component mass properties about component-fixed axes are known.

Hanavan's model of the previous chapter obtained these by assuming simple

geometric shapes for the components. This chapter provides a more general

method which assumes nothing about the component shapes, only that the

components are rigid bodies. It does depend on the assumption that the

following information can be obtained:

(1) Experimental data for the whole-body center of mass and

the inertia tensor for a living human (discussed later in this chapter).

(2) An estimate for the mass of each of the various components

of the body (defined by the researcher). Chapter.6 presents two methods,

one using either of the two sets of regression equations referred to

in Chapter 3, the other using experimental data for casts of the

particular subject's body parts.

(3) An estimate for the sum of the three moments of inertia for

each body component. Chapter 7 provides two methods, one using Hanavan's

simply shaped components, the other using experimental data for casts

of the subject's body parts.

The basis for the solution for component mass properties is the formation

V' what will be called mass property difference equations. These are formed

S subtracting the equations for whole-body mass properties (Equations (2-7)

16
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and (2-13)) for selected body positions. Using th-e center of mass difference

equation and estimates for component masses, component centers of mass can

be determined. Using the inertia tensor difference equation, estimates for

component masses, and estimates for sums of component moments of inertia,

component inertia tensors can be determined. It will be shown in Chapter 5

that estimates for sums of componentmoments of inertia provide a needed

additional independent equation relating elements of component inertia tensors.

Component Centers of Mass

For two different body positions, say I and II, identical except for the

position of one component, say number-j, Equation (2-7) becomes:

n -I
R-B I (Til= - + 1 ). mi /mB

R [i T= (*C. /Ji + mi] /MB= "/i Ji /B

Splitting up the summation and subtracting these two equations:
II n In -C nR-I n~l -,I

I- , Ti M+ R mi-) R M M
RBT -R-BI = Iikci /Ji - " i =,Ji m i B

1i1 i= 1j 1Jimi=i 1 /mB

Equivalently:

mB• AI-II(RB) = il AI-IITiI R-C'/jmi +[AI-II(R-ji) mi

(4-1)

But I and II are identical positions except for the position of component

Thus:

0(;



TI = TI i=l n (i # j)

RI •II
RJ = R. =, ... , n

1

Hence Equation (4-1) becomes:

m B [(TIB ] R [ACIT 5 J j i m i

Equivalently:

[A 4(T') R = (m,/mj) [' ().](4-2)

In the above equation R and can be determined by experiment

B B

(see page ), as can mB The quantity mj can be estimated (see

page ). The matrices Tjl and Tjll represent arbitrarily selected, known

positions. Thus Equation (4-2) represents a system of three linear equations
- .I-II

in three unknowns, the elements of R Clj/ Clearly, if A (T is

nonsingular, RCl/j can be solved for directly in Equation (4-2). However,

the following analysis proves that A -I(T.) is singular for all choices of
positions I and II.

The orientation of the component-fixed axes C!-xyz is arbitrary. Thus,
30 I

without loss of generality, C!-xyz can be oriented such that X .00,

0', and p - 00 for position I, for which:

I 0 0~
T = 1 0

0 0 1

SFor any other position, II:
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coSX cosy cosX siny sinfp COsx siny cosp
.sinxII cosII +sinxIIsin.II

T I = sinxilcosy II . II sinyllsinp sinx Isiny lcospIIj I II 11.1

+cOsX cosi' -COSX si nli

-siny cosy sinIp cosy cOsII

Hence:

1-cosxIcosy -cosx IIsny IIs I I .cosXsiny cos I

+sinII cosiI II s II

I-. (Tj) = -sinxllcosyII 1-sinxllsinyllsini 1l -sinxllsinyl cosPI

IIII IIsihI-cosXI cos II cosXI InI

siny -cosy sinII 1-cosy cospI

The determinent of the above matrix turns out to be zero. This

ii seen by expanding the determinent and substituting appropriate trigono-

w•,:lric identities. Consequently, for any selection of positions I and II,

I--I I
. , atrix A -(Tj) is singular.

Hence Equation (4-2)-represents a dependent system of equations

S14, page 133), and therefore does not uniquely determine the

v " .,, of R . However, if an arbitrary third position (III) is

: x !".•,cd, the following difference equation results, identical in form to

f-(4 -2):

,!1 T (mB/mj)[l-III( R (4-3)

'$..J1ination of Equations (4-2) and (4-3) constitute a system of

",�. ~-r .. in three unknowns. For judicious selection of positions I,
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II, and III, it turns out that this system can contain three independent

equations, thus determining a unique solution for RC/j . However, it may

be inconvenient to isolate three independent equations. An alternative

solution of the system which does not require this isolation does exist, and

its derivation follows.

Combining Equations (4-2) and (4-3) into one equation:

AI-II(Tj __ /J = [mB/m i)[I-III(]B

[I'III(Tj)

equation by AT:

iAjA (mB/mj) B (44)

But for any matrix A., ATA. and A. have the same rank, or the

T r•vber of' independent rows (or columns) (Ref. 14, page 139). Thus

' A ( TT

S If A. has rank 3, then so has ATA.. But AlA. is 3x3; hence, ATAj

imiu~t have an inverse if it has rank 3. Therefore, if A. is of rank 3,

T3

t ion Equation (4-4) can be solved directly for RA,/j as follows:

SRCj (in/ij ) (AM A)/ I AT A[ I 1-11B (4-5)

Whether or not A. has rank 3 depends upon the selection of positions

:i ;i, and III. Two specific examples follow, the first of which is an A.

r:, st 3, the second of which is an A. of rank 2 thus substantiating the

týnicr statement that the selection of body positions must be judicious.

j l

R: T AI-Iu

C'./ (m/,A. .(
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Example 1

Let positions I, II, III have rotation angles as indicated below.

POSITION X Y

I 0 0 0
II 0 sin- (3/5) 0

III 0 0 sin- (3/5)

For this selection of positions:

1 0 04 l5  0 3/5 0 0
T 0 T= l 0 1 4 L0 4/5 -3/

0 0 - -3/5 0 4/5 0 3/5 4/5J

Thus:

1/5 0 -3/5

AI-ll (T 0 0 0

3/5 0 1/5
0 0 0
0 1/5 3/5

0 -3/5 1/5

For the above matrix Aj:

0.4 0 0
T

A.A. 0 0.4 0

3 0 .8

,:.. is clearly of full rank. Thus (ATAj) 1  exists and is in fact as
*~ 33

2.5 0 0

(ATA )1 = 0 2.5 0
! 0 0 1 .25



Therefore, for this selection of body positions Equation (4-7) will

provide a unique solution for the elements of RC/ . In Example 2, which

follows, this will not be the case.

Example 2

For this example let positions I, II, III have rotation angles as

indicated below.

POSITION X 'fI1 0 0 0
II 0 sin (3/5) 0

III 0 sin- 1 (4/5) 0

For this selection of positions:

1 01 F 4/5 0 3/ 3/5 0 4/5
Tl I 0TI0 1

• 0 L~-3/5 0 4/5]L41 35
1i _L/ 0 3/5ý

Thus:
1/5 0 -3/5

O-1 0 0
A (uT_] 3/5 0 1/5

A . -- - - - - - -
A (T 2/5 0 -4/5

0 0 0

4/5 0 2/5

, rr the above matrix A:

ATA= H 0 2

0•: 0 1.2
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which is.clearly of rank 2. Therefore, ATA. will not have an inverse.

The matrix Aj provides only two independent equations and thus does not

determine a unique value for the elements of RC/

An apparent (though not proved) general rule for the selection of body

positions to insure a unique value for RC/d is to choose positions such that

C ' and are not all three coplanar. Thus, in

Example 1, where these three vectors did not lie in the same plane, a unique

value for R was determined. But for Example 2, where the vectors

were coplanar, a unique value was not determined.

In the analysis of this section, it was tacitly assumed that for

component j, it is possible to define positions I, II, and III such that

only j is different. But this is not possible for some components, for

example if the thigh position is different, then so must the calf and foot

•.-sitions be different. More generally, Equation (4-5) is applicable directly

cely to those components connected to only one other component, hereafter

f:lled external components. Those components which are connected to two

i••i_,r components shall be called internal components. Note that the central

.!:;:,,onent from which the limbs emanate fit into neither of these categories

' lcponents, as more than two components are connected to it. For conven-

, ':., this central component will be numbered n Typically, of course,

c..,ntral component is simply the torso, but the researcher has the option

; .>'jude the head and neck as part of the central component if they are

Sto be immobile. This assumption may be quite reasonable for a

• :,..:,.-suited astronaut, with restricted head mobility.

; -thod for determining the center of mass for any internal component

one 'le component external to it is now presented. Using the method

''.' s ;rented, the center of mass of the external component can be
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determined. For notational convenience let this external joint be numbered

j+l and the internal component whose center of mass we seek be numbered j.

Then difference equations similar to Equations (4-2) and (4-3) can be formed

but will have an extra term (because the contribution of component j+l

does not subtract out) and will be as follows:

[AII(T)] RC = (mB/mj][AI-II(RB) j
-rm.~~~m.1 FAI(I"+

- mj+Li/mj] LJA-"<(,+l,% cj,+1 + - j+A J

and

[A'- ('T] i R t3imB/mjK AI I(RB)I

- (mj÷ 1/mj] [A'''(Tj+1)Rcj+I/J + A (Rjj)1

In the above equations, the center of mass of the external component,

" must be predetermined. The T., Tj+I, and R are
rj+/j+l ,j+l' ýunctions of the body positions I, II, and III. Combining the above

týjations, an equation analagous to Equation (4-5) is obtained and is as

SfA Tlows :

-Ct/j = AA IAT mB/mj

A (T+) 1 (RJ+)

i lI-IIL (Tj+ +lJ+l I-III
::; Jj+l



A similar analysis can be carried out to find the center of mass for

each internal component with more than one external component. The following

equation results:

R AT. Aj 2m//m. L-- RB---)

C -•-JJ BL I-III i J

i external (Ti)R'.

to j

The above equation can actually be considered generally applicable to

any component except the central component if the summations are ignored

for external components (for which there are no i external to j ). Assum-

ing RC/ (i=l,...,n-l) have already been determined, the center of mass

of the central component is given by a simple manipulation of Equation (2-7)

for any position:

C TTn [B/mn) RB - A[n. .ciij+ j ]] n

J in the above equation can be any conveniently defined fixed point

i the central component.

Using the equations developed, then, all component centers of mass can

! r . found.

StInertia Tensors

Tcr two different body positions I and II, identical except for

• � L:ition of one external component j, Equation (2-13) becomes:

S
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n I}

II n ITI •IIT II = I'C (T ) + P

B i = [ i/Ci

Subtracting these two equations:

1-II~~ ~ (I I II nlT1' (TI )T_-T II (TII T+I I III
B B i I i ,i'/ i T i) + i-

AI-II(IB) =i -I i / T. ~~ iCli~ii

But for all components except j,

TI T pII

: i

Substituting, the following equation is obtained:

I= I T(TIT - T /(TI1T + pI _ II

Equivalently:

i I -II(B - I-lII T' TI)T - II •)
D A (P ) T I (Tlc TI(T 1 Tc (4-6)

In this last equation, I and I are obtainable from whole-body

-P,,ri.mental data (see Chapter 6). As can be seen in Equations (2-9) and

SP is a function of mi. T, R , and R The choice of

,-• • ,•,3tions determines and R The quantity m. is obtainable

S.'re from the methods presented in Chapter 6. The quantity RCi/j is

A .•'•' . lc.!':e from the method presented in the previous section. Thus P. can

... < any positions I and II, and Equation (4-6) becomes a matrix

in one unknown matrix, . However, there is no obvious way to

->t'6) directly for lj, Hence it becomes necessary to express the
:•i I~3
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matrices in terms of elements, carry out the operations, and equate elements.

In this way Equation (4-6) is equivalent to the following system of nine

linear equations in nine unknowns (the elements of I I
3/

Main Diagonal Elements

3 3
S(IB(PP)))A ( =I kl -ll(Tj( q 'k)T (rJz) I j/,(k9.)

where p,q,r F {1,2,3} (pgq/r)

Off Diagonal Elements

l-l(IB(q'r))-Al-ll(pJ(qr)) =3 3 kl (T.(q'k)T (rA))]Ij/cj(k'z)
9,l=lW

where q,r £ {1,2,3} , qfr

* Because of the symmetry of the inertia tensor, the above system can be

i uced to a system of six equations in six unknowns (the six independent

.- nts of I. The off diagonal equations given above actually provide

:!j' three rather than six equations. For example if q=l, r=2, then above

t •.ition becomes:

3 3A 0B( ,2:- (Pj(1,2)) = (T [A ,k)Tji(2,t))] I c (k 9

k=l k=l T(,j

Eut for q=2, r=l

3 3
B(2,1 ." (P (2,1)) = [A(Tj.(2,k)T i(1I,1MI)]~ (k,k)

9=l k=l

IPI , P1. and I . are symmetric matrices, or:
B j.
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I (2,1) I (1,2)
B B

I (2,1) 1 P (1 ,2)B B

SpT (2,1) P'(l,2)

.3

PT.1(231) P 1((1, 2)

Ij (k,z) = l ' (ý,k) -3 ./1 C

Substituting these into the earlier equation for q=2, r=l, reversing

the order of summation, and commuting the multiplications within the summa-

tion:

3 3  F TT

A'1 0 I (I(l ,2))-AI-II (1,2)) =[ •=II-(T (2,k (I,)) lj/cI(2,k)
k=( z l 3  3/c j

But k and z are dummy variables. Hence the equation above for

:--2, r=l is seen to be identical to the earlier presented equation for

I , r=2. Similarly, identical equations result for q=l, r=3, and for

; , r=l. The same is true for the cases q=2, r=3 and q=3, r=2.

In this way the original system of nine equations reduces to the follow-

,; linear system of six equations in six unknowns (the independent elements

SJ/

33
•ii'iiMain Dia gonal Elements

,:••.,, " (I• p,p))-A - (P (p,p)) -- Al ' -',(T (p~k)2 Ij ,/ J PP)

3 3

+2 A(Tj(q,k)Tj(r,k) lj'C (z,k)
t=l k=lA )JJ

k>,

i:h
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where p,q,r {1,2,3}, p~q/r q<r

Off Diagonal Elements

6 -I(1B(q'r))-AI-I(Pi(q'r))" Y,[= I-II(Tj(q'k)T (r'k)) Ij c(p'p)

3 3
+ I [ 1 (T.(q,k)T.(r,z)

z-l k-l
k>k

+ T (q,9.)T (r,k))]I j (, k)

where q,r z {1,2,3}, q<r

In matrix form this linear system can be written as follows:

v (1,I) =I-II

jIPCG (2,2)

i.. 1 jc (3,3)

3 •(4-7)
,r '/C.I C (1 ,2)

j

Sl1 , (1,3)

I ,i (2 ,3)
3lC

0 ,,i
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where

O AII (1B 0II) A AII(P 0I,)

B3

A'II (IB (2,2))- A (Pj(2,2))

AI-I (IB (3,3)) - A (Pj(3,3))
AI-I (IB (1,2)) - (Pj(1,2))

A I -I ( I . (1 ,3 ) ) - A I -I (P j (1 ,3 ) )

Al-II IB (2,3)) - AI I(Pj(2,3))

and

I-I,-IV.

'I •(T i(1,1)2 ) A(Tj (1 ,2) 2 ) .( T (1 ,.3)2 ) 2(&Tj(1 ,1)Tj(1 ,2)) 2(6Tj(1,1)Tj(1 ,3)) 2(aT (1.2)T (1,3))-

I; ,( 'rJ(2,1) 2) A(T 1(2.2)-) A(Tj(2 ,3) 2 2(aT i(2,1)T j1(2,2) ) 2(6T i(2 ,1)Tj(2,3) ) 2(ATj(2,2)Tj(2,3))

•;A(TjO 3, 2 ) &(T 1(3,2)2 ) A(Tj(3 ,3)2 ) 2(aT j (3 ,T1)T(3.2) 2W i (3,I)T 1(3,3)) 2(AT i(3,2)T 1 (3.3 ))

I(T '( (2.1)T (3.1) A(T (2.2)T (3.2)) a( 2,3)T (3.3)) F (T (z:1)J(13:.)] [.A(Tj(2'3)TJ(3,1))] [ &(Tj(2:3))Tj '2))]
ii ,a(T (2,1 T (3,2) +A T{2T j33} LA(T (2,2)T (3.3))j

,A;. (T j(1,I}T 1(3.1)) A(T~j(,2)Tj(3.2)) a(Tj(1,3)Tj(3,3)) rA(T •I,(12)T i(3.1))] r A.(T j(1.3)T 1(3.1))I & (Tj(1,3)Tj(3,2))"L+aTj(1Tj [(3.2)J L+ 3(T( )3,3JL+((Tj(1,2I (333)J

&(T (1.I)T (2.1)) A(T (,2)Tj(2.2)) A(Tj(1.3)Tj(2.3)) [r (T (1.2)T (2.1))1 [ (T (1.3)Tj(2.1))1 [ A(Tj(1.3)Tj(2:.2))
•~~~ L . ( ( ,IT( , ) ) [+ a (T (1 , 1)T (2 ,3 ))j L+ A (T (1 ,2 )T (2 ,3 )

(4-8)

arly, if the 6 x 6 matrix V- has an inverse, then the vector

Ic1•,.Qnts of I can be solved for directly in Equation (4-7).
3 Ij/Cl

-. it turns out that V- is singular for any selection of positions
" rigorously proved in Chapter 5). In fact, for every one of numerous

the rank of V is only 4, even when position II's

"Q all different than position I's.

"t third position (III) , identical to I and II except for the position
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of component j, is introduced, then an equation like (4-7) can be written,

* as follows:'

iV
i ýCi!I !_l~j l~cjl ,I = -. I-III

!3 1 (2,2)

j1C
I '. (3,3)

i C '
Combiing quatons 4-7)and4--9)

1 (1,2)

1 c (1,3)

1' (2,3)

wh s o Qand havi Q e same form as the previously given
J;{i equations for V-I and -IIbj , respectively. .

Combining Equations (4-7) and (4-9):

!3.3

.•'•,•i .i-lll(2,2) • - l
V b . (4-10)

:(3,3)

::, (I1,2)

s,. (l1,3)

: For notational brevity, the 12 x 6 matrix --- shall be denoted

ii ••symbol Q. Now, if Q be of rank 6, then so will the 6 x 6 matrix

}i•• '. .In this case (Q Qj- will exist, and Equation (4-10) can be solved

:t.•.tly for the vector of the elements of ljlC- However it turns out that
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the rank of Q. is less than 6, the actual rank depending on the selection

of positions I, II, and III. That the rank of Q. is less than six is

proved in Chapter 5, where it is additionally proved that no matter how many

positions are incorporated into Equation (4-10), the Q. matrix will still

be of rank less than 6.

For three positions, it is possible to find specific cases for which

* the rank of Qj is 5. Thus there is hope for a unique solution if one

additional equation in the elements of I 'jC is introduced. An approxi-

ration for the sum of the moments of inertia of component j provides this

equati on:

,,,11) I ' j~c.(2,2) + I=~ 33 (4-11)I,/cj(l ,I) + I+ .(,3 s.il

'The constant s. can be approximated using the methods presented in
r•.:•apter 7.

Incorporating Equation (4-11) into (4-10):

3 b.

Q 1 (4-12)

S.
1•, ji•' (3,3)L J

1 j/C(1,2)

1 'C (1,3)

1 (2,3)
j/C
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Q j -- -- --

* III001
**

Now if Q is of rank 6, then (Q Q exists and Equation (4-12)

can be solved for the elements of I'j/C as follows:

'J/C (1,1)

1 ci(2'2) I- l

1j C (3,3) * T 1 bT ( 1-)j Q Q 3(4-13)

,I j C (1,2) s ,

1j/ (1,3)j~c

*j1 (2,3)j c

An example of body positions I, II, and III for which (4-13)

, -Ids a unique solution for the elements of I follows.
JIG.

Example 3

Let.positions I, II, and III be defined the same as they were for

;ýnOt,1le 1. For these positions,

0 L:
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0.36 0 -0.36 0 -0.96 0

0 0 0 0 0 0

-0.36 0 0.36 0 0.96 0

0 0 0 0.6 0 0.2

0.48 0 -0.48 0 0.72 0

0 0 0 0.2 0 -0.6

Q. = 0 0 0 0 0 0

0 0.36 -0.36 0 0 0.96

0 -0.36 0.36 0 0 -0.96

0 -0.48 0.48 0 0 0.72

0 0 0 -0.6 0.2 0

0 0 0 0.2 0.6 0

111 0 0 0

',,r which

1.4896 1 0.5104 0 -0.3456 0

1 1.4896 0.5104 0 0 0.3456

*T 0.5104 0.5104 1.9792 0 0.3456 -0.3456
QJ QJ=

0 0 0 1.52 0 0

-0.3456 0 0.3456 0 2.7616 0

L 0 0.3456 -0.3456 0 0 2.76161

is, it turns out, of full rank, and thus (Q. Q)I exists. Thus
SAc, (4-13) will determine a unique set of values for the elements of

I% ion (4-13) is not applicable to internal components directly. An

!; similar to that for the center of mass determination of the previous

reults in the following equation for the inertia tensor elements of
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internal components:

0 Ij/Cj (1,1)-

Ij/C (2,2) T

(Q. Q.) Q. b

jS
I lj~cj(2,3)

A-(T.I.' TT +
, i

• '(T• I TT + Pi)(2,2)
1 i/C. i 1

i external A (TiIi;c Ti + P.)(2,3)

to ------- -----iiciT -+ Pi)(I I)
TT +

•x- I (Ti Ii/ciT i + P i)(111)

• (4-14)

The above equation is applicable only after the earlier presented

; have been used to determine R and to determine R and
j/J- i/JN

for i external to j. Equation (4-14) is actually generally appli-

lo any components (the summation is ignored for external components)

" of course, the central component.

, central component inertia tensor is obtainable from:

T n- 1 TT p.

'n = TI IB - Z(Til T + Pi ) - P J Tn (4-15)

0nC niC
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tris last equation was obtained by simple manipulation of Equation (2-13).

The last two sections, then, have provided a means for finding the

:.ntler of mass location and inertia tensor for each body component about

". ::'•,:.onent-fixed axes. A computer program capable of using this means

P• ',,SAII PART) is provided in Appendix B. Once the component properties

W", found, Equations (2-7) and (2-13) can be used to predict whole-body mass

;•erties for any body position of a particular subject.

ý:,-ir~ental Determination of Whole-Body Mass Properties

At the beginning of this chapter, it was seen that experimental data for

1 ,;'*.-body mass properties for selected positions was needed in order to apply

' n• thod developed by this chapter for prediction of component mass prop- U,

S. This section briefly describes how this whole-body mass property

4"t ,-!cht be obtained.

, rVile several researchers have experimentally determined centers of

S y for living subjects, only one determination of whole-body center of

S..e nd moments of inertia has been made (Santschi, DuBois, and Omoto).

ti't, whole-body products of inertia have not been experimentally deter-

*-4 Hu,;ever, Fowler provides a means for carrying out such a determination.

"-,:schi, DuBois, and Omoto (Ref. 15) experimentally determined centers

v-1y and moments of inertia about three axes for 66 living subjects in

: ;:tions. This was done by finding oscillation frequencies of a

;c.ndulum suspended alternately from two parallel axes. Mean values

I .¶;• trd deviations were determined for the subjects studied. Results

".t useful predictions of moments of inertia for similar subjects

A, : from height and weight alone.

S. .. ý.,retical accuracy of the pendulum used was about 0.5 percent
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for the center of gravity and between 2 and percent for the moments of

inertia. The length of the pendulum was long and the pendulum oscillations

.-all (10) to minimize the effect of shifting body fluids.

Fowler (Ref. 9) developed a theoretical method for experimentally.

•.-termining spacecraft mass distribution while in space. By using a series

:f three thrusting maneuvers, the center of mass and inertia tensor of the

,raft can be determined, assuming the spacecraft mass is predetermined from

i linear acceleration and that angular rates can be measured. This method

i; applicable to a human subject. If the experiment is done on earth, then

S0'm torques can replace the known thrusts. Though there is currently no

ý,¶ce available with which to spin a human about three perpendicular axes

, ich Fowler's method requires), one can be developed.

In order to minimize the effect of redistribution of body fluids,

i,•,'•,ar rates should be kept as small as is accurately measurable.

WIf it is desired to include outer coverings in the values for mass

,/ ' ',,, es, then the subject needs only to wear said coverings during the

,':,'.ntal tests (for either of the above described methods).

v'," - ation of Outer Garments or Suit

o,-r some application, e.g. a maneuvering astronaut, the subject may

S'J * outer covering that moves with the body parts. The contribution of

: covering to the system mass properties may not be negligible.

.ribution of these outer garments or suit can be accounted for by using

ii•, • n already developed if we consider the outer covering of component

o, f j. No changes occur in the equations already given except

d s. will include both the body part and outer covering contri-

,, .. t is shown in Chapters 6 and 7 -how m. and s. estimates
w 3 3i~
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',:luding the outer covering can be made. This method will be valid if the

* •: 1lowing two assumptions are made:

(1) The components of the outer covering corresponding to the

body components are themselves rigid bodies.

(2) There is negligible relative motion between each component

and its outer covering.

The basis for the solution for component mass properties is the forma-

:, of what will be called mass property difference equations. These are

-'m:d by subtracting the equations for whole-body mass properties (Equations

) and (2-13)) for selected body positions. Using the center of mass

1!"';,rence equation and estimates for component masses, component centers

.i v.s can be determined. Using the inertia tensor difference equation,

nW:.tps for component masses, and estimates for sums of component moments

.,ýrLia, Component inertia tensors can be determined. It will be shown

. 5 that estimates for sums of component moments of inertia provide

Ir. '.. additional independent equation relating elements of component

.. tensors.

AC

0

V.,;



CHAPTER 5

Explanation of Infinity of Solutions

for Component Inertia Tensors

In Chapter 4 it was claimed that the component inertia tensor could

x: be uniquely determined without the introduction of an additional equation

ý*Oating the elements of the inertia tensor (the sum of component moments of

'1'rtia). The purpose of this chapter is to prove this claim.

Equation (4-8) can be expanded to include any number of positions as

V: lj '/cj b

(2 ,2) ---....1:i ' - 1 1 1 -I -I l l
(3,3) j

(1,2) (5-1)

(1,3)

v -N (2,3) DIN

N is the number of body positions.

In Chapter 4 it was claimed that the inclusion of any number of body

: .. 1 .not provide a of full rank, and thus (5-1) cannot be

. , "olved for the elements of for N positions selected. The

0C this chapter is to prove this claim, which is equivalent to

, Žt there exists an infinity of solutions for the elements of Ij/C.

S39

'39
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S(5-1). Note that (5-1) is based solely on whole-body mass properties for

~1ected positions and estimates for component masses.

The method of proof will be to show that for any positions I and II

p-,ly j different), V. has the same linear dependence of columns, i.e.

Ssum of the first three columns is zero. Once this is shown, then it is

it-ly seen that Q in (5-1) will have this linear dependence since each

'the submatrices must.

Consider any orthogonal transformation T, which for this work is

.3. By the definition of orthogonal, T T T-T1, and consequently

1. Writing this out in terms of elements and performing the matrix

FT(l,l). T(1,2) T(l,3)] F(l~l) T(2,1) T(3 ,1f -1 0 0
TT T(2,1) T(2,2) T(2,3) T(1,2) T(2,2) T(3,2) 0 1 0

LT (3,l1 T(3,2) T(3,3)j LT(l 3) T(2,3) T(3,3)j [0D 0 1j

f(2)T (I l) T(2,1)T21 T(2,l)T(3,1) l 0
.T (1,2)T l ,2 +T (2 ,2) +T(2,2)T(3,2) 1
4T23)(l 3(2)J0

T 3,)Tl,2 I+(,)(,) ý+T2 3)(3,3) ,
fT21)~ (+T32,1 2~) L(,)(,1

i .T(3,3)T(l 3,3 (33T ( ,3(2 2 )(,)

ý'oT3,3T(1,) +(3,3T(23), +T (3,3),

Sfor any positions I and II:



S(1,1) 2+Tl(l 2)2 +17(l,3)2 = Tll(l,l)2+Tll(l,2)2+TII(1,3)2

T 1 T(2,1) 2+T 1(2,2) 2+TI (2,3) 2= T II(2,1)2 +TII1(2,2) 2+T-II1(2,3) 2=1

T 1I(3,1) 2+T(3,2)2+T1(3,3)2 = TII(3,l)Z+TII(3,2)2+TII(3,3)2 = 1

T (2,1)TI(3 ,l)+TI(2,2)TI(3,2)+T (2 3)TI(3 3)

' TI(2,1)T1 I(3,1)+TII(2,2)T 1 1 (3,2)+TI (2,3)T 1 (3,3) 0

:= T (,I)+T (l (T,2)TI(3,2)+TI (i),3)TI)(3,3)
T• = TI (l ,l)T,1I(3,1)+T. 11 (i1,2)T 11 (3,2)+TI i(l1,3)TII ( ,3

T (l,l)TI (2,l)+T I (l,2)TI(2,2)+TI (l,3)TI (2,3)

S= TII(I I)TII(2,1)+TII (1,2)TII (2,2)+TI(I ,3)TII(2,3) 0

But manipulating the above equations, and then substituting the
i e1ents of V1 -II (referring to Equation (4-8):

V -I (1,1)+V -• (1,2)+V -• (1,3) 0

ii,.'"V 1" 11 (3' 1)+VI-I I (2,2)+V 1-11 (2,3)j 0

SV I- (,1)+V (3,2)+V (3,3) =0

• Vj (,1l)+V (5,2) (53)V

!,•":.V. Vj- 6,1)+V -I (6,2)+V -I (6,3) = 0

* 3o

0 ... V:i iszr.Tu is of rank less than 6 for any

I:•':;s and 11. The choices of positions I and II are arbitrary;

V lI(3-)vII(32)vII(3 )

' a ' 3
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VI

V,•'ce of columns. Clearly, then, Qj = N will be of rank less than
VI-N.

,'Ince the sum of its first three rows is zero, and thus it cannot have six

i'-tarly independent columns. Hence, for any number of positions, (5-1) will

t. : yield a unique solution for the elements of Ij'c In order to obtain

4,.ique value, then, it is necessary to introduce an additional equation.

F• • p roximation of the sum of the component moments of inertia can provide

4:-,, •..er independent equation, which together with a Qj matrix formed from

w.",:ious selection of three body positions determine a unique value for the

.,ss of I (as was shown in Example 3).
/c~

:i4



CHAPTER 6

Suggested Methods for Estimation

-of Component Masses

The determinations of the component centers of mass and inertia tensors

•epended on estimates for the masses of the components. The purpose of this

chapter is to provide two pos.sible methods for making this estimate. These

ire regression equations and water immersion (with an assumed density). Both

7kthods depend on statistical data for cadavers. Inclusion of outer garments

;-suits is also considered.

!,--ression Equations

Estimates for component masses can be obtained from regression equations

4,.icting component weights from total body weight.

J. T. Barter (Ref. 1) used the frozen cadaver data of earlier research-

O ; to devise a system of regression equations estimating the component

--,ý;,,ts. These equations are as follows, where all weights are in lbf.

- . 11, page 171):

I
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Standard Deviation
Body Segment Regression Equation of the Residuals

W Head, neck and trunk = 0.47 x Total body wt. + 5.4 (±2.9)

Total upper extremities = 0.13 x Total body wt. - 1.4 (±1.0)

Both upper arms = 0.08 x Total body wt. - 1.3 (±0.5)

Forearms plus hands = 0.06 x Total body wt. - 0.6 (±0.5)

Both forearmsa = 0.04 x Total body wt. - 0.2 (±0.5)

f Both hands = 0.01 x Total body wt. + 0.3 (±0.2)

Total lower extremities = 0.31 x Total body wt. + 1.2 (±2.2)

Both upper legs = 0.18 x Total body wt. + 1.5 (±1.6)

Both lower legs plus feet = 0.13 x Total body wt. - 0.2 (±0.9)

iN Both lower legs = 0.11 x Total body wt. -0.9 (±0.7)

Both feet = 0.02 x Total body wt. + 0.7 (±0.3)

N=11, all others N = 12.

The sum of the predicted weights of the above equations does not always

t,• ual the total body weight. To compensate for this, the difference is

.:, culated, then distributed proportionally among the segments.

Another set of regression equations, also based on frozen cadaver data,

wt,. developed by Clauser and McConville (Ref. 4). They are as follows,

, ,'.-re all weights are in lbf:

Head Weight = .028 Body Weight (W) + 6.354

Trunk Weight = .552 W - 6.417

Upper Arms Weight = .059 W + .862

Forearms Weight = .026 W + .85

Hands Weight = .009 W + .53

Upper Legs Weight = .239 W - 4.844

Lower Legs Weight .067 W + 2.846

Feet Weight = .016 W + 1.826

* ,;L
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As for Barter's equations, the predicted weights are corrected so that

the difference between total body weight and the sum of predicted weights is

distributed proportionally among the segments. Note that Clauser and

McConville's equations provide an estimate for head weight not given by

Barter's.

It is claimed that this second set of regression equations results in

a substantial redistribution of weight. Which of the two sets of regression

equations is more accurate is as yet an unanswered question.

Water Immersion

By having the subject in question alternately immerse his body parts

into water tanks, the volumes of components can be measured. Internal compon-

ents' volumes can be found by immersing each internal component with the

component(s) external to it, then subtracting the already determined volume(s)

, the external component(s). The volume of the central component can be

found by immersing the entire subject to find his/her whole-body volume,

t',V,.n subtracting the already determined volumes for the other body components.

Using statistical data for specific gravity of cadaver parts (Ref. 6,

1,t; 1955a), approximate values for component masses can be found from

e,,rimantally determined volumes by assuming that the subject's components'

M:Ific gravities are reasonably close to the cadaver data. However, this

': rot account for individual variations in body structure. Thus if one

, has larger than average bones then his component specific gravity

•• '• , expected to differ from the average data for specific gravity.

I method of water immersion may be qualified, in that component

• .,: ry be changed by water pressures encountered. This effect, if

, can be minimized by immersing the components as much as possit)Ie
:<V
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near the surface of the tank (more horizontal than vertical). One possible

way to avoid such a deformation effect would be to use rigid casts of the

subject's body parts for the immersion tests.

This water immersion technique, though more difficult and costly than

using regression equations, has the advantage that it better accounts for

individual differences in mass distribution.

Inclusion of Outer Garments or Suits in Component Masses

Each component mass can be considered to include the mass of the outer

covering surrounding the component (see Chapter 4). The contribution to the

component masses by the outer covering parts can be found by simply cutting

the outer covering into appropriate sections and weighing. These values are

k then simply added to the corresponding component masses.

If destroying a garment or suit by cutting it' into sections is econom-

ically undesirable or impossible, then the researcher must devise his own

rŽtehod for obtaining reasonable values for the masses of the outer covering

:•• C•ýponents.

Tieber and Lindemuth provide a set of regression equations for estimat-

"' the component masses for a typical pressure suit (Ref. 17, page 28).

0•i



CHAPTER 7

0 Suggested Methods for Estimation of

The Sums of Component Moments of Inertia

The determination of the component inertia tensors depended on estimates

for the sums of component moments of inertia (see Chapters 4 and 5). The

purpose of this chapter is to provide two possible methods for making this

estimate. Methods for inclusion of outer garments or suit shall also be

presented.

Hanavan Model

The first method is to obtain values for s, (i = l,...,n) by using

Hanavan' s simply shaped components to obtain estimates for Ijc (j 1,....,n)

(see Chapter 3) then finding sj from its defining equation:

3
Z I - (k, k) (j = ,...,n)

,• k=l /c, 1

This is not equivalent to assuming simple geometric shapes for the

body components, rather it is assuming that the sums of moments given by

H`anavan's model will not differ significantly from the actual values for the

Hanavan's estimates for I (j 1,...,n) will, as was indicated
i/c.

' r Chapter 3, depend upon measurements of the subject's dimensions and

C.timates for component masses. The researcher can use either of the methods

,rt-ented in Chapter 6 to obtain component mass estimates.

0• 47

4 i•



48

Casts of the Subject's Components

Molded casts of the particular subject's components made of a uniform

A density material provide the second method for estimating the sj (j = 1, .

If experimental tests are performed on these casts identical in nature to

the method for whole-body tests discussed in Chapter 4, then estimates for

S 'c (j = 1,...,n), and thus for s. (j = 1,...,n) can be obtained.i/c.
It is not necessary that the uniform density material used to make the

casts have the same specific gravity as the data for body components. This

is true because, for example:

)dm (y 2  2) (y 2 + z)dv
xx (y2 f2 (y P f z dv p

m v v

for the casts. Thus the ratio of specific gravities can be used as a scaling

factor to obtain estimates for I (j =,' n) for the subject.
j/C

It is worth nothing that the orientation of the axes about which the

spin tests are made is not critical as long as the three axes are mutually

perpendicular. This is because the inertia tensor transforms by a similarity

transformation. It can be easily proved that for an orthogonal similarity

transformation, the sum of the main diagonal elements is invariant under

rqy transformation.

*rrlusion of Outer Garments or Suits in s.

There are two methods for the inclusion of outer garments or suits in

Svalues for s (j = ,...,n).

The first is to use the Tieber-Lindemuth model for each suit part

-:--rsDonsing to a body component (see Chapter 3). This rmethcd cin cec '4,

S ,fnd the inertia tensor for each suit part, whi ch kA t'x r• € ,•

Sinertia tensor for the corr,-;pondinj holy ,r;..Žr.'(; t "
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by using Hanavan's model or cast experimental data).

The second method involves actually cutting up the garment or suit into

segments corresponding to the body parts and performing experimental tests to

obtain inertia tensors. This can be done separately and adding in or actually

surrounding the corresponding cast to obtain (j = 1,...,n) for the

combined body component and suit segment. For flexible outer coverings, such

test data may be of questionable validity. For a pressure suit, it may be

possible to inflate each component to sufficient pressure to render it

sufficiently rigid to solve the problem of flexibility. This would involve

somehow sealing off the ends of the section of pressure suit, however.

Conclusion

This chapter has presented two possible methods for obtaining reasonable

estimates for the sums of component moments of inertia (with or without

outer coverings or suits). Both methods presented depended on statistical

data for cadavers (Hanavan's model on the component mass estimates; the com-

ponent cast method on the specific gravity data).

Hanavan's model is clearly the easiest and least expensive, as the only

X experimental data needed is the total body mass and the various anthropometric

•ta. But the component cast method, while more costly and more difficult

, carry out, offers the advantage of actually taking the possible variations

frir-, statistical average of component shapes into account.

rL



CHAPTER 8

Limi tati ons

There are four types of limitations on the method for predicting mass

properties presented in Chapter 4. These are errors introduced by invalidity

in assumptions, errors in whole-body experimental data, accumulated errors

in the mass property predictions for the central component, and joint con-

straints preventing exact application of the method. The remainder of this

chapter discusses these and presents recommendations for further study where

appropriate. Finally, suggestions for future sensitivity analyses are made.

* Invalidity of Assumptions

There is some question as to the validity of each of the assumptions

41 made in the development of the present study's method for determination of

component mass properties.

As was indicated in Chapter 1, the rigid body assumption is of marginal

validity for the torso because of the flexibility of the backbone. Hanavan's

rodel partially models this by dividing the torso into two halves. Theoret-

ically, nothing precludes such a division of the central component for this

study's method. It remains for future researchers to determine the validity

, f such a representation of the central component. For a pressure-suited

t +tronaut, mobility is restricted sufficiently that the torso may prove to

* .e adequately modeled by only one component.

"The hands and feet are also flexible, thus also co",pro,!iisinq t.e rl;ii4

Sasumption. But these body parts are of sufficiently srll , '

S•+{i1)
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the variation in contributions to the mass properties due to flexibility

* I may be negligible. This is even more likely for a pressure-suited astronaut

with reduced limb mobility. This also remains for future researchers to

determine.

The assumption that there exist valid methods for estimating component

masses depends on there being little significant difference between component

masses of a live subject and a frozen cadaver. This is the case only if

component properties are approximately the same before and after death and

if individual variations are not too great. Some indication of the validity

of the estimation methods would be given by comparing results after applica-

tion of both methods. Also, because the total number in the sample of ca-

daver data is, to date, relatively small, there is a need for more such data

to increase the validity of the regression equations and specific gravity

data. Further, as was indicated in Chapter 6, the effect of individual

variations in body structure and of water pressure on component volumes in

water immersion experiments must be considered and investigated.

Next, the validity of methods of obtaining sums of component moments

S o inertia is considered. Both methods presented (the Hanavan model and

S, €st data) require estimated values for component masses which may themselves

Sin error. Also both methods use uniform density components, which actual

'.rn components are not. That there is negligible difference is another

Výect for future study.

Finally, the assumption that the components of the outer covering are

"'•1ýxible and that there is negligible relative motion between each of the

• • r.ponents and the corresponding outer covering component introduce

0 . le error should also be experimentally investigated.

O %•, ,•, ,,4
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Errors in Whole-Body Experimental Data

Errors in whole-body experimental data arise from shifting body fluids,

experimental measurement errors (in oscillation frequencies or angular rates

and torques), movement by the subject, and the environment of the experi-

ments.

The error due to shifting body fluids can be minimized, as was indicated

in Chapter 4, by small oscillation amplitudes and long pendulum length (for

the complex pendulum) and by small angular rates (for Fowler's method).

Future work would involve improvement of the complex pendulum accuracy and

development of a device capable of physically realizing Fowler's method.

Inadvertent movements by the subject can be minimized by careful design

of the apparatus used. Some movement is unavoidable, however, specifically

internal movement of blood and expansion and contraction of the lungs. The

influence of these must also be investigated in the future.

The environment of the whole-body experiments may also be of some im-

portance. Probably most significant in this respect is the effect of gravity.

If the experiments. are carried out in the presence of appreciable gravity

* (they must be for the complex pendulum), then the gravitational force will

tend to settle the body fluids toward the lower portion of the body. Thus

an astronaut under weightless conditions may have an appreciably different

* mass distribution than on earth. This effect may be negligible, but should

be investigated. One avenue of study would be to perform the experiments

with the subject both upside down and right side up and compare the resulting

* data for mass properties.

?: cumulated Errors in Central Component

SAs was indicated in Chapter 4, the central component mass properties
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can be determined only after the mass properties of all other components

have been found. Thus any errors made in the determination of the component

mass properties will accumulate in finding the mass properties for the

central component. There is, of course, the possibility that errors in the

component mass properties will cancel out, but this cannot be assumed.

Joint Constraints

The bending of certain body joints is constrained so as to preclude

the orientation of the external components in three positions not in one

plane (this was suspected in Chapter 4 as necessary to uniquely determine

the component mass properties). The elbows and knees (hinge joints) are

joints of this type.

For the joints immediately external to these joints, then, a researcher

can only obtain approximate values by slightly rotating the components in-

ternal to the hinge joint for one of the selected positions so as to allow

the external component to get out of the plane of the otherpositions.

Because both the thighs and upper arms appear fairly symmetric, this seems a

reasonable solution to the problem of joint constraints. Experimental data

on cadaver thighs and upper arms can serve as a more quantitative measure of

this symmmetry.

Suggested Sensitivity Analyses

Sensitivity analyses on the effect of the possible sources of error

presented in this chapter should be carried out in the future so as to

determine accuracy requirements for reasonable predicted results. These

would consist of alternately determining the relationship between input

errors in component masses, sums of component moments, and whole-body data
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and the resulting differences in predictions output. Of secondary importance,

though, is the differences in predicted mass propertires; more important are

the differences in predicted dynamics of the system ofinterest.

0

S



CHAPTER 9

Concl usion

In this study a method has been presented for predicting the component

mass properties for a human about component-fixed axes, with or without

outer coverings. This prediction depended on a component rigid body assump-

tion, estimates of component masses and sums of component moments of inertia,

and data for whole-body mass properties for selected, known positions. If

an outer covering was to be included, then the prediction additionally

depended on the assumptions that negligible error was introduced by consider-

ing the covering components rigid and relative movement between body and

covering components negligible.

The researcher is free to choose the number and definitions of the

body components. Thus if it turns out that significant error does not re-

sult, the hands might be considered part of the forearm, the feet part of

the calves, or the head and neck part of the trunk. It remains for future

researchers to investigate the validity of different component definitions.

Limitations of the results including several possible sources of

error were discussed in the previous chapter. Some of these error sources

are not easily isolated nor the degree of error easily ascertained. However,

the best indication of the validity of the method presented in this study

is not the accuracy of the predicted mass properties, but the degree of

agreement between predicted and actual dynamics of the system of interest.

In summary of the method presented in this study, a flow chart is

provided in Figure 4 indicating the sequence of steps taken in actually

55
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carrying out a prediction of the mass properties for a component. Dotted

lines indicated optional steps. Once component mass properties have been

determined, whole-body mass properties can be predicted for any position

by using Equations (2-7) and (2-13).
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Determine
Experimental Whole-Body Mass Property Data

for Judiciously Selected Positions

Apply Apply Perform
Barter's Regression Clauser-McConville Water Immersion

Equations for Equations for. Tests for
Estimating Component Estimating Component Estimating Component

Mass Mass Mass

Determine Outer
Covering Component Masst

V

Predict Component
Center of Mass

Estimate Sum of Component Estimate Sum of Component
Moments of In'ertia Using IMoments of Inertia Using

Hanavan's Model Experimental Data for
SJ Cast of Component

Include Outer Garments Include Outer Garments
I in s1 using Tieber- I fin s using Experimentall

Lindemuth Suit Model Iata on Covering
L u Components

L _]

Predict Component
Inertia Tensor

Figure 4. Flow Chart of the Determination
0 of Component Mass Properties



APPENDIX A

PROGRAM WHOLE (FORTRAN IV)

The purpose of PROGRAM WHOLE is to calculate whole-body mass properties

from component mass properties about component-fixed axes. An explanation of

the symbols used in the program follows:

Computer Symbol Study Symbol and/or Explanation

A The Point A.

FCTR Conversion Factor from Degrees to Radians.

G The Angle y

IBA(3,3) The Matrix IB/A

ICA(3,3) The Matrix 'i/A

ICC(3,3) The Matrix i/C

ICCP(3,3) The Matrix Ii'/C

MB The Scalar m B

MI The Scalar m.1

P(3,3) The Matrix P.

P I T

PRMAT A Matrix-Printing Subroutine.

RBA(3) The Vector R-B/A

RCA(3) The Vector RC./A
1Ci/

RCJ(3) The Vector Rc/'

RCJP(3) The Vector _R
Ci /J i

RJA(3) The Vector R

T(3,3) The Matrix Ti

TICCP(3,3) The Matrix Ti Times I'/C

58
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U The Angle P.

X The Angle x.

The following are external subroutines (listing is not provided for

brevity):

External Subroutine Purpose

MSAB Matrix Multiplication (AB).

MSABT Matrix Multiplication (ABT).

MATADD Matrix Addition.

MSNULL Sets all the Elements of a Matrix to zero.

A listing of PROGRAM WHOLE follows.
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PPC0GqAM WHOLF T'HPtJT,, OJTPUT)

* THTS PPOGPAM CAI-rULATEv THE FOLLOWING *

* 1) C(MPnMRFNT ANn WHOI.F-RODY CFNTFP OF MAýS *
* LOCATTONq PEIATTVF TO ARPITPAPY POINT A, *

* ?) COMPn•'FNT AND WHOIF-RoDY INFPRTA MATRTCES *
* AF3OtJT THF AXFS S;YqTEM AT A. *

* UNI I TS -*--

*A LOCATTON ---

SROt)Y POSITTN *---

DIMPENSION RCjP(i), PrJ(3), PCA(3), RJA(I)q PF3M3),
2 T('3,3), P(3,3), TTC('P(3,3)

RFAL AI, MRB, Trrp(,;,0i). TCC('4,3), TCA(3,3), TBA(3,3)
PT = •#.4l5PGq9Rq7Q
FcTP = PI/lAo.
FEAD) 20, MR, K

CALL MSNIJI.L (PRA, -, 1. 3)
CALL MqNUJLL (IRA, 3, 3, 3)
PRT?!T 10?P

10o FO)YAT (l..I)
00 I T = 1, NI
R•EAD 203, MI,

PFAr ?01, X, G, U
PRTIT 100% X, rq U
X = X*FCTP G G*FCTP $ U = IJ*FCTR

100 FOPMAT (9X, 3F10.6)
SiTX = STN(X COSX = COS(X)
STNIG = SI ( G ) COSG = COS(G)
STKMI = STI (1)) •:COS!1 = Cos(W )
7 (1 ,1) :COSX*cOSG

T(1,2) = COSX*qTMIG*;TNII - STNX*COSU
T( ,3) = CSXr'T(6*rrSTI + STKX*STIN
T ( I, l) = "T Ny*rCoqG
T '2?) S T MX *` T MG*qTNII + COSqX*COSU
T(3,3) :SINX*cTKG*)CnSII - COX*STNU
T(i,]) -SIN(G
7(3,?) = rSC.,*e•TU

T(',,R =CO. S~o* 0U
PFEAFl 2n?, RCJP
•FADq ?0?, PJA

@T
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CAl.J MSAB (T, . 3, QCIP, 3, 1., PCJ, 3, 3, 3)
CALL MATAnF (prJ, PJAI, RCA, 3, 1, 3, 3, 3)
00 P' K =1, 9
RRA(K) = PRA(K) + PCA(K)*(MT/MB)

P COMTIINUF
I') I K = 19
PFAll •.?.,(CCP(K,L), L-1,3)

3 COKT NIJF
CAlL HSAR (T, is. 3, TCrP9, I, 3, TICCP, "lo 3, 3)
CALL MSART (TIrCP, 31. i T, 3, 3, ICC, 'q, 3, 3)
P(ool) = m * (PCA(?l*PCA(?) + PCA(3)*PrA(3))
P(ý:l?. = lqMI * (PCA(1)*PCA(M) + PCA(3)*RCA(3))
P(3,31 = *l * (PrA(1]*)rCA(1) + RCA(2)*PRCA(?))
P(? = mJ * (PCA ( I*PC A(?2))
P(l ,3) = mI * (PrA(i)*PCA(1))
P(793) = MI * (PrA(?)'PCA(3))

P(2•,1) =PI

CA.I_ MATAnD (IrCC, , IPA, 3, 3s31 3, 3)
CALL MATAnrn (IPA, ICA, IRA, 3, 3, 3, 3,p 3)

I CONMT T rN F.IE
CAI.L PPMAT (PRA, 3. i)
CAIl. PPMAT (IRA. 3, 1)

?00 FOPmAT (Fl0.6, TIO1
201 FOP• AT (3F10.?P)
?0? FOQ!AAT (IF?n.6)
?03 FnPmAT (Fl n,6)

E Nn

SURPOLITINF PPMAT (ATQIX, K,).)

ST•TS ?IJI3POUTTNF PoTNTTc ýNy K IIv L MATPIX,
* * AI, * * * *** * * 4 * ** * * * J * * * ý* V * * * * * * * * ** * * * *** ** * * ** * ** * * ** * **

,ImFN(STON ATRIY (K.).
PRTNT 101
DO 1 M 1 ,K

PPRT•T 100, (ATr7TY (v,,I), N IL)
1COk'T TW)E

o ,in Fr0.,,AT (IX, 6r 0 o.1?I
101 Ff•PMAT (1/o JY, 71 (jW*))

RPT(IRM Fin



APPENDIX B

PROGRAM PART (FORTRAN IV)

The purpose of PROGRAM PART is to calculate the mass properties for

any body component (except the central component) from whole-body mass property

data for three selected positions, an estimate of the component mass, and an

estimate of the sum of the component moments of inertia. An explanation of

important symbols different from or in addition to those symbols of PROGRAM

WHOLE (Appendix A) follows:

Computer Symbol Study Symbol and/or explanation

A(6,3) The Matrix A.3

ATA(3,3) The Matrix A.TA.

ATAAT(3,6) The Matrix [A TA ] -1AT

BBI(6) A Dummy Vector Needed by Subroutine

MATINV.

BBR(3) A Dummy Vector Needed by Subroutine

MATINV.

BI(13) The Vector b

bj I-III

s j

BR(6) The Vector FAI-II(Rff)I

EAI-III(R

DETER The Determinant of the Matrix

S~Inverted by MATINV.

62
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The Prefix E The Computer Symbol Prefixed is for
* a Component External to the Component

Whose Mass Properties are Sought.

E(6) (=El+E2) A Vector Used for Notational Brevity.

E0(6,3) A Matrix Used for Notational Brevity.

E1(6) (=(EO)(ERCJP) A Vector Used for Notational Brevity.

E2(6) A Vector Used for Notational Brevity.

E[(13) A Vector Used for Notational Brevity.

MC m.3

The Suffix N The Symbol Suffixed if for Body

Position N.

NE The Number of Components External

to the Component Whose Mass Properties

Being Sought.

*T

Q(13,6) Q.
QT(,)*T * *T * -l

QTQ(6,6) Q Q OR (Qj Qj)

*T * -T
QTQQT (Q. Q*) Q.

SC s.

V12(6,6) V

V13(6,6) V

0
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The following are additional external subroutines (listing is not

provided for brevity):

External Subroutine Purpose

MATINV Matrix Inversion

MSATB Matrix Multiplication (ATEB)

VSUBC Vector Subtraction
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PROGRAk. PART (TNMPtT, OIITPJT,)

* THTS PPOGQAM r)FTFRMTtEq THF MASS PROPERTTFS FOR *

* ANY CrMPONE-NT nF TWFE R•nDY EXCFPT FOR THF CENTRAL
SCOMPONF-NT (TYPTrAlI.Y THE TOPSO)),

'TMENS"ON A(69i), ATA(1,3), ATAAT(3,6), RRI(6)9 RRR(3),

2 t(13), R(R ) ( F(A). FO (A,3) , El (6), E7(A) , El (13),
3 ET1-CP(3q, )o F'('i.,, )s, EPCJP(3), EFJA(1,'), ET(3,3,3),
4 FTTTN!(3,I), ETTTTt39,3,3), 9 'TN(3,3), IFIA(3,913),
5) 1.1CP(19,3), TF, nFP(l,,:J), TinF)-T(6,9?), TPTVP(6)9 IPTVI(A),

7 PRA('1,3), PC.jr)I), t JA(3), UIJmR(6), SUMI(1.3), T(3,3,3),
8 \v P(6,6),, V13 '( ,,6), V rTRT (A.)

REAl mqv, VC, M. TIPA. TCCP
PT = 1j415Q?6c;3;,897Q
FCTR = Pl/O.
PRINT 204

READ 2n3, mC
0O( 1 N' = 1. 3
RFAn p x. (,,) ,, tj
PRTINT 2 0 1, y , J U
X = X*FCTP (, = G*FCTP $ U U*FCTP

I CALL FORMT (T, No, Xg G, U)
DO P K = 1, 3
O0 0 L =, 3
A(KI) T (I ,KL - T(qKL)

2 A (K+3,L) = T (I ,K,L - T (3,K, )
CALL MSATR (A, A, 1, A. 6, 19 ATA, 69 6, ")
CALL MATTNV (ATA,3,RmRO+DETFRIPIVPlNrDEP,3,lrSCAP)
CALL mSAHT (ATAq 3. i A, 6, 39 ATAAT, -it 6, 3)
DO 3 N = I1 3

RED 2K2, pI
0O 1 K t. I

3 RRA(N.K) P(KI
O0 ' K ,1
PR(K) (1R/MC) * (RPA(1,K) - PFRA(2,K))

F PK.3)=(M9/MCj.* (PPA(1,K) - RBA(3,K))
IF (NE.EQ.0) GO TO 1l
.O0 12 1 = , 19
REAn ?03, MF
CO A K 6,A

6 Sil"AR(K) 0.0

, () 7 = 1,3
RfEAn 201, EX, Frig, rJ
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EX FX*FCTP Er, FG*FCTP $ EU = EU*FCTR
7 CALL FORMT (FT9 F-) EX, EG, EU)

DO P K = 1, 3
DOR L =, 3
En(KL) (MF/Mr) * (FT(1.KL) - FT(29KOL))

P En(K+3,L)= (ME/IAe,) * (FT(1,K9L) - FT(3,KL))
PF'AD .?)2P2 EPCJP
CAtIL M•.AH (E17 o , "•, EPCjpq 9, . 1 El 6. 3; 3
PO 9 1 o 3
REArO 20?2,P

DO Q K = 1 3
0 ERJA(NK) = P (K)

DO I1 K = 1 3
E7(K) = (MEI/ C) *(EPJA(19K) "FPJA(2,K))

11 E?(K+3) = (ME/Mrc) *(EJA(1,IK) -FRJA(3,K))
CALL VADor (El, F2, P' 6)

CALL. VADo" ( M;tjP,, F, SIImp, A)
DO ?1 K = 1., 1"3

2? SWAT (K) = 0.0
DO 1P K = Iq 3
P.A 902,% P
O0 1P L = I 3

1p E rCCP(K,L_) PRl.)
r PO N0 = , 3

D() 19 K = 1.v 3
DO 191 = 1, 3

19 ETNI(Kl.) = FT(m,KI_)
CAILL- M.SAR (FTt, ";, 3, FTCCP, , , 3, EUT 3, 3, 3)
CALL MSAHT (ETT, 3, 1, ETN, "g 3, ETITN, 3, 3, 3)
00 ?3 K 1. 3
DO ?3 t.. 1 , 3

?' ETTTT(NKL) = FTTTNKtKL)
?0 CALL_. PAXTH (EP. N9 FT. ME, FPCJP, ERJA)

D0 22 K = 1, 3
KP = 4-K

CAIll._ POR(KP, Koo KR)
ET(K) = FTTTT(,I<,K) - FTTTT(?,K,K) + EP(1,K,K) - EP(P,K,K)
ET(K+6)=FTITT(lK,K) - ETTTT(?,K,K) + EP(IK,K) - EP(3*K*K)

.2 ET(K.9)=FTTTT( -FKQ)-ETTTT(3qKOKP) + EP(].KOKR)-FP(3,Kl)KP)

ET(13) = 0*o
CALL VADDC (SIJ-AT,, 'T., U)UM T 13)

1 p CONITIMIE
CAI_I. VSURC (RPo SUUP, mPP 6)
CALL VSUPC (RI, SUtMI, T9, 13)

13 Cn.'TINHE
CALL Klc4AF4 (ATAAT, 1,• 6,RP, A, 19 PCJP, -1, 6, 3)
CALL. PPMAT (PCIP, 19, 1)
CAI L FOPNIV (VI•,3 T, 1 , ;)
CAL..I_ FORMIV (V1i, To 1 , 3)
CAI.L FORPM (0 ( V I 1P)0
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CAl II. PRMAT (0, 17, 6)
CALL N4SATP (0, 11, 6, *, 13, 6, oT0, 13, 13, 6)
CALL. PPMAT (OTh, A, A)
CALL MATINIV (0T0,6,RT ,O.,OETFRIPIVTINnElt,6TSCAT)
CALL PPMAT (0TO, 6, 4,)
CALL. M;ARAT (0Th,, 6, A, 0, 13, 69 QTOQT, 6, 13, 6)
PF•A ?r%2, RJA
CALLI PPMAT (P,JA, 3, 1)
PPTNT P03, m-
Co 14 1•I .
CI L L ' T- I 1,1"., 7, P~, C m,T RJA)

flO 14 K 1 -1
PEF• An 2, R

CC 14 L 1l, 3
14 IP4 (NKI_ - (

DO '1 K = 3
PT(K) = IPA(l,wo, ) - IPA(? q, K) - P(1,KK)-+ P(2,K,K)
RT(K+.)=TRA(lKK) - IPA(3*KK) - P(19K,K) + P(3,KgK)
KP = 4-K
CALL_ POR (KP, KO, KP)
RT(K+÷)=TIA(I,,KO.KP)-TPA(P,KO,Kp)-p(IKo,KR),P(?,KOqKR)

It; RT (K+c))=TPA(IKn,KP).IPA(3,K.0,KR)-P(1IK0,KR) ÷pP(3,KO,KR)
RFAr 203, 0C

RT(131 = !;C
CALL. PRMAT (RT, 13, 1)
CAL.L MlAR (OTOoT, A, 13, R8, 139 1, VCTPT, 6v 13, 6)
DO 17 K = , 3

17 ICrP(K.K) = VCTrT (K)
TCCP(1,,2) = VCTDT(4)
ICrP(1,3) = VCTPT(c)
IC"P(?,3) = VCTPT(A)
CALl.. PPMAT (ICCP, -, 3)

P00 FOP04AT (F10,6, 10)
201 FOQMAT (3;rl 0.2?
)0? FOPMAT (3IFR?6)
P03 FORMAT (F10(,)
204 FOPMAT (lHl)

E N r

0
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SIijPn tJTTN,' FORMT(T, Ni, Xg G, U)

THTS qIJPOUTTNF FnPMS TWE MATTX T.o

OTm.FN5T0N T0(3,l,)
SINTX = SIN(X) $ COSX = Cn)S(X),
SINTG = SIN ( G) Co•sr, = COS(G)
S IUJ = SNI (U) CriSLJ = COS(0J)
T (M,• I 1)) =CoSX*roqrG

T ( 1`0 1 ,P =CO.;X T IG q T NIt - STNIX*COSU
T(1,vIo3)=Cn SX* T NiG*,CrSIJ + STmIX*STNU
T (N,?, 1)= INX*rcO•G

T(I, P)?=,)IX*'-TTG*TNI+ COrX*CotSU
T (Kit?,3) =STNX*qTtG!Cr*SI, - C(OSX*SINlj

T (, 3, ) =-SG*qTMU
T (NqJ, 3, ) =rOSG*"nýL

RETIJPrN $ EN!D

SItMnOIJTIN'F FPwRA0 (0, V•?, V13)
* * * *** *** ***** * **** ** *** * *** * ** ** ******** **** *** ** **** **** *** *

* THIS STJRPOLUTTNE FoPmS TWE MATRTX 0. *

OTvMFNSIONI 0(13,4), V12(696), V13(696)
DO I K =1, A
CO I L I t 6
Q(Kl-) Vl?(K;I..)

1 Q(K+69L)=V13(K.t)

QW13,1) = l0n f(,19 : 1in $ 0(1(3,3)
0(1-14) = 0.no n 0(13,) = 0.0 $ 0(13,6) 0.
PFTIJRNIJ ENkif

StUPPOIUTINP FOROP/ \/V, T, M, Ni)

* THIS •S)f3ROUTTN!F FilOMS THE MATPTY V. *

rTmFrN'ON V(6'to;), T(It3,43)
0)0 1 K 1. 3
00 1 L = 1, 3

I V(w( ,L) T(MIK*I )*T(k 4 K9L) -- T(NKL)*T(NKL)
00 ' L 4, 6

LP 7-L
CAI.L POR (LP, 10, lPI
0 0 P K = I, 3

2 V(K,L)=2.°•*(T(m,KgI )*T(MKI R)-T(NKtLr)*.T(NiKLP))
00 3 K = 49 6



KP =K-6
CALL POP (KP, KO, KP)

o o• L = 1., 3
3 V(KqL) T(MKr) )*T(MjKPL) - T(NKOt.*T(NKPL)

r, 4 K 49 6
KP = K-3
CA! t POR (KP, KO, KP)
o0 4 L = 4, 6

LP = 7-L
CAI L POR (LP, .1-0, LP)

4 V (KoL.) = T(MKn*IR'1,*T(MKRLO) + T(MKO,LO)*T(MKR,LRp)
2 -T(N,IKtn, R iP T(\, ,KP ,lr) .- T(k•OK ,LO)*T(NqKP ,LR)

RFTIIR\N T EN13

SIJIIPUTItJF PIAXTH (P, N, Tq MC, RCJP, PJA)

* THIS ;I1•RPOUTTNF" APDLIFS THE PAPALLEL. AXIS TH7OPEM. *

* si~ sis i si * is *s ** ** * ** * 4s* 4s** *** * *is *i *4s * is is * * * is is is**is

CIMFNSI0N P(3I,I,), PN(3,3). RCA(3), PCJ(3), PCJP(3),
7 PJAA(3), T(71,3 1), T(,( ( )

PRTNT 101. MC

CA1I. DPMAT (PC tr), -, 1)

CAII. PPMAT (PJA, 3, 1)
00 1 K 19 3
D0o 1 L I * 3

I TN(Kl.) T(Nov i.)
CAI l. PPMAT (TK?. ';q 31
CALL M; A 9 ( TN a it 3* PCJP, 39 li RCJ, '4, 3+ 3)
CALL PPMAT (RC 1, 3, 1)

CAIL VADOC (PC.J, PJA, %CA, 3)
CAI.I- PPMAT (RCA. 3. 1)
no 2 IP = I , 3
CALL POP (UP, TO, IP)
PRINT 10f,. IP, TO, TO

S00 FODMAT ()oX, 3TF')

P(ý,IPOIP) = Mri* (RCA(TO)*PCA(TQ) P CA-(IP)*PCA(IR))
P(N,I,,r) I = Mr i (RPA(TO)*RCA(IP))
P (, T P T0O) = P( ,.1,TO TR)
PITNT 01 , P(NI* TP,-rPI , P(NiTTP)

101 FOr),MAhT (lnX, ?F2rn.1?'
? CONIT NIlE

no 3 K = 1, 3
o0 3 L = I, .3

3 PNI(K t) I P(N,K',I )

CA! L PPMAT (PN, 19 3)
PFTIllPN END



70

SIJPROLJTTNr POP (TP. TO, TP)

ST•T4S qt5HRPUTTNF IDrTFRmTlFq THE TINTEGERS 0 AND P FROM P,*

IF (TP,EO.I) Go TO 1
IF (TP.EQ.?) Go TO ?
IF (TP.FQ.3) GO TO I

1 To=? TP = I; GO TO 4
TO = I $ TR = $ CO TO 4
TO1 = 1 l

4 COITT WUE
PPF. TI IRN NF.i

'tI POUITINF PRMAT (ATPIy, KiI..)

STHTS •I•RnLUTTNF PoTtITq ANY K RY L MATRIX, *

r1MFNSTON ATPTI (K,L)
PRTNT 101
Do I M = 1.K

I PPiT, IOn, (ATDTX(M*,N). N = ! L)
100 FODMAT (IX, 6r.?n,121
11.) FOOMAT I /• IX q 71 ( 1 -W*))

P FTIJ I ,! C" END

0
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